Rabu, 14 November 2012

Energi Ionisasi


Energi ionisasi adalah energi yang diperlukan oleh suatu atom dalam bentuk gas untuk melepas satu elektron membentuk ion positif.
Energi ionisasi adalah energi yang diperlukan oleh suatu atom dalam bentuk gas untuk melepas satu elektron membentuk ion negatif
atom memetlukan energi untuk melepas elektron
Semakin kecil energi ionisasi, semakin mudah suatu atom melepas elektronnya membentuk ion negatif.
keperiodikan energi ionisasi
keperiodikan energi ionisasi
Dalam tabel periodik, harga energi ionisasi menunjukkan sifat keperiodikan. Dalam satu periode dari kiri ke kanan, harga energi ionisasi semakin besar. Dalam satu golongan, dari kiri ke kanan, harga energi ionisasi semakin berkurang.

Atom


Suatu atom terdiri atas inti atom dan kulit-kulit atom. Inti atom terdiri atas partikel-partikel proton yang bermuatan positif dan partikel-partikel neutron yang tidak bermuatan. Sementara kulit-kulit elektron berisi partikel-partikel elektron yang bermuatan negatif. Tempat elektron berada disebut orbital. Elektron-elektron terlebih dahulu menempatkan diri pada orbital-orbital yang mempunyai tingkat energi terendah.
Dua buah atom atau lebih dapat membentuk suatu ikatan kimia menggunakan elektron-elektron valensi yang dimilikinya untuk membentuk suatu molekul. Jika atom-atom tersebut tidak memiliki perbedaan keelektronegatifan yang kuat (atau sedikit perbedaan keelektronegatifan), elektron-elektron valensi atom-atom tersebut digunakan bersama membentuk ikatan kovalen. Jika atom-atom tersebut memiliki perbedaan keelektronegatifan yang besar, atom-atom tersebut akan membentuk ikatan ion.
Atom-atom tersebut berikatan untuk memperoleh kestabilan yaitu membentuk konfigurasi elektron seperti konfigurasi elektron unsur-unsur gas mulia.
Pada ikatan kovalen, elektron-elektron digunakan bersama oleh atom-atom yang berikatan sehingga atom-atom tersebut mempunyai konfigurasi elektron seperti konfigurasi elektron unsur-unsur gas mulia. Sebagai contoh hidrogen memiliki 1 elektron valensi dan oksigen memiliki 6 elektron valensi. Kedua jenis unsur tersebut membentuk molekul air (H2O).
molekul air
molekul air
Jika dalam suatu ikatan kovalen memiliki sepasang elektron yang digunakan untuk berikatan, maka ikatannya disebut ikatan kovalen tunggal. Ada juga ikatan kovalen yang memiliki dua pasang elektron, disebut ikatan kovalen rangkap atau ikatan kovalen rangkap dua. Jika ikatan kovalennya menggunakan tiga pasangan elektron, disebutikatan kovalen rangkap tiga. Pada kasus tertentu, pasangan elektron yang digunakan bersama hanya berasal dari salah satu atom saja, disebut ikatan kovalen koordinasi atau ikatan kovalen koordinat atau ikatan kovalen dativ atau ikatan kovalen semipolar.
Pada ikatan ion, atom-atom yang memiliki nilai keelektronegatifan tinggi mengikat elektron membentuk ion negatif, sedangkan atom-atom yang memiliki nilai keelektronegatifan rendah melepaskan elektron valensinya membentuk ion positif. Dengan menangkap atau melepas elektron ini, atom-atom tersebut mencapai konfigurasi elektron unsur-unsur gas mulia dan membentuk ketabilan. Meskipun atom-atom dalam senyawa ion tidak menggunakan elektron bersama-sama, tetapi atom-atom tersebut saling tertarik dengan kuat satu sama lain karena muatan atom-atom tersebut berbeda. Dalam suatu senyawa ion,  semua ion-ionnya saling tarik menarik satu sama lain membentuk struktur kisi kristal.

Pengenalan dasar struktur atom

Partikel sub atom
Proton, neutron dan elektron
massa relatifmuatan relatif
proton1+1
neutron10
elektron1/1836-1
Nukleus
Nukleus berada di tengah atom; ia mengandung proton dan neutron. Kumpulan proton dan neutron disebut juga nukleon.
Pada hakekatnya, seluruh massa atom berpusat di nukleus, karena massa elektron sangat kecil.
Memahami jumlah proton dan neutron
Jumlah proton = NOMOR ATOM dari atom
Nomor atom sering disebut juga nomor proton.
Jumlah proton + Jumlah neutron = NOMOR MASSA dari atom
Nomor massa disebut juga nomor nukleon.
Informasi nomor atom dan nomor massa biasanya disingkat dalam bentuk :

Berapa banyaknya proton dan neutron yang dimiliki oleh atom tersebut di atas?
Nomor atom merupakan jumlah proton (9) dan nomor massa merupakan jumlah proton + neutron (19). Jika atom terdiri dari 9 proton, maka akan ada 10 neutron sehingga total keseluruhannya 19.
Nomor atom menandakan posisi dari suatu elemen pada tabel periodik dan karenanya jumlah proton memberitahukan elemen apa yang kita maksudkan. Jadi, jika atom memiliki 8 proton (nomor atom = 8), ini pasti oksigen. Jika atom memiliki 12 proton (nomor atom= 12), ini pasti magnesium.
Begitu juga, setiap atom klor (nomor atom = 17) memiiki 17 proton, dan setiap atom uranium (nomor atom = 92) memiliki 92 proton.
Isotop
Banyaknya neutron di dalam sebuah atom bisa bervariasi dalam skala kecil. Sebagai contoh, ada tiga variasi atom 12C, 13C, 14C. Mereka seluruhnya memiliki jumlah proton yang sama, tetapi jumlah neutronnya berbeda.
protonneutronnomor massa
Karbon-126612
Karbon-136713
Karbon-146814
Atom-atom ini disebut isotop, yaitu atom-atom yang memiliki nomor atom yang sama tetapi nomor massa yang berbeda. Mereka memiliki jumlah proton yang sama tetapi jumlah neutron yang berbeda.
Variasi jumlah neutron tidak mengubah reaksi kimia dari karbon.
Elektron
Memahami jumlah elektron
Atom bermuatan netral. Ke-positif-an proton diseimbangkan dengan ke-negatif-an elektron. Hal ini menunjukkan bahwa di dalam atom netral :
banyaknya elektron = banyaknya proton
Jadi, jika sebuah atom oksigen (nomor atom = 8) memiliki 8 proton, ia pasti memiliki 8 elektron; jika atom klor (nomor atom=17) memiliki 17 proton, ia pasti memiliki 17 elektron.
Susunan dari elektron-elektron
Elektron-elektron berada pada jarak tertentu dari nukleus di dalam suatu rangkaian level yang disebut dengan level energi. Tiap level energi hanya dapat diisi elektron dalam jumlah tertentu. Level energi pertama (terdekat dengan nukleus) terdiri dari 2 elekton, level kedua 8, dan level ketiga juga akan penuh ketika terisi 8 elektron.
Level-level ini berada dalam jarak yang cukup jauh dari nukleus. Elektron-elektron akan selalu berada pada level energi serendah mungkin selama level tersebut belum terisi penuh.
Memahami susunan dari sebuah atom
* Lihatlah nomor atom dari tabel periodik. Yakinkan Anda memilih nomor yang benar di antara dua nomor yang diterakan. Nomor atom selalu lebih kecil dari nomor massa.
* Nomor atom merupakan jumlah proton, dan karenanya nomor atom memberitahukan kita juga jumlah elektron.
* Susunlah elektron-elektron dalam level-level energi, selalu isi level terdalam sebelum mengisi level luar.
contoh. mencari susunan dari atom klor
* Tabel periodik memberikan kita nomor atom 17
* Oleh karenanya atom klor terdiri dari 17 proton dan 17 elektron
* Susunan dari elektron-elektron tersebut adalah 2,8,7 ( 2 di level pertama, 8 di level kedua, dan 7 di level ketiga )
Susunan dari 20 elemen pertama

Setelah 20 elemen pertama ini kita akan memasuki elemen transisi tabel periodik.
Dua hal penting yang perlu diperhatikan
Jika kita melihat susunan dalam tabel periodik:
* Jumlah elektron pada tingkat terluar (atau kulit terluar) sama dengan nomor golongan. (Kecuali helium yang hanya memiliki 2 elektron. Gas Mulia biasa disebut dengan golongan O bukan golongan 8). Hal ini berlaku di seluruh golongan elemen pada tabel periodik (kecuali elemen-elemen transisi).
Jadi, jika kita mengetahui bahwa barium terletak pada golongan 2, berarti ia memiliki 2 elektron pada tingkat terluar; yodium merupakan golongan 7 yang berarti ia memiliki 7 elektron pada tingkat terluar.
* Gas mulia memiliki elektron penuh pada tingkat terluar.
Struktur dan diagram elektron
Dalam kimia dasar kita akan menemukan struktur elektronik dari hidrogen dan karbon, seperti gambar di bawah ini :

Lingkaran-lingkaran tersebut menggambarkan tingkat energi – yang sama dengan peningkatan jarak dari nukleus. Kita dapat membentangkan lingkaran tersebut dan menggambar struktur elektron tersebut dalam diagram elektron yang lebih sederhana.
Sebagai contoh, karbon dapat digambar sebagai berikut ini :

ORBITAL ATOM

Orbital dan orbit

Ketika planet bergerak mengitari matahari, kita dapat menggambarkan jalur yang ditempuh oleh planet itu yang disebut dengan orbit. Gambaran sederhana dari atom juga sama dengan fenomena tersebut dan kita dapat menggambar elektron-elektron yang mengorbit mengelilingi nukleus ( inti atom ). Walaupun sesungguhnya elektron-elektron tidak mengorbit pada jalur yang tetap melainkan mengorbit pada sebuah ruang yang disebut dengan orbital.
Orbit dan orbital terkesan sama, tetapi sebenarnya memiliki makna yang cukup berbeda. Kita perlu memahami perbedaan di antara keduanya.
Ketidakmungkinan penggambaran orbital elektron-elektron
Untuk menggambar suatu jalur kita perlu mengetahui secara pasti di mana objek tersebut berada dan ke arah mana objek itu bergerak. Sayangnya, kita tidak bisa melakukan hal tersebut untuk elektron-elektron.
Prinsip ketidakpastian Heisenberg menunjukkan bahwa kita tidak dapat mengetahui secara pasti di mana elektron itu berada dan ke arah mana elektron itu bergerak. Hal ini membuat kita tidak mungkin menggambarkan secara tepat jalur atau orbit dari elektron yang mengelilingi nukleus. Tetapi ada suatu cara lain yang bisa diterima untuk menggambarkan pergerakan elektron-elektron di sekitar nukleus.
Elektron hidrogen – orbital 1s
Bayangkan kita memiliki satu atom hidrogen dan menentukan posisi elektronnya pada suatu waktu tertentu. Segera sesudahnya, kita kembali menentukan posisi elektron ini, dan kita mendapati elektron itu sudah ada di posisi yang berbeda. Kita tidak mengerti bagaimana elektron ini berpindah dari posisi yang pertama ke posisi yang kedua.
Kita coba untuk terus mencari titik-titik posisi dari elektron tersebut, dan kita akan perlahan-lahan menemukan suatu gambaran 3 dimensi peta posisi dari elektron tersebut.
Dalam kasus elektron hidrogen, elektron dapat ditemukan di manapun di sekeliling nukleus. Diagram menunjukkan kemungkinan dari posisi elektron yang membentuk ruang wilayah yang mengelilingi nukleus.
Pada 95% dari hasil pengamatan, elektron dapat ditemukan dalam suatu ruang wilayah yang relatif dekat dengan nukleus. Wilayah dari ruang tersebut kita sebut dengan orbital.
Kita dapat beranggapan bahwa orbital merupakan suatu ruang wilayah di mana elektron itu bergerak di dalamnya.
Tiap orbital memilki nama :
Orbital yang dihuni oleh elektron hidrogen disebut dengan orbital 1s. Angka “1” menunjukkan bahwa orbital tersebut memiliki tingkat energi yang terdekat dengan nukleus. Huruf “s” menunjukkan bentuk dari orbital tersebut. Orbital s berbentuk bulat simetris yang mengelilingi nukleus.
Orbital di sebelah kiri merupakan orbital 2s. Bentuknya sama dengan orbital 1s kecuali ruang wilayahnya yang lebih jauh dari nukleus – di mana letaknya pada tingkat energi kedua.
Jika kita perhatikan secara seksama, kita dapat menemukan bahwa terdapat wilayah di mana rapat elektronnya lebih tinggi ( di mana titik-titiknya lebih pekat ) dekat dengan nukleus. “Kerapatan elektron” merupakan suatu istilah yang dipakai untuk memberitahukan kemungkinan kita dapat menemukan elektron pada posisi tertentu.
Elektron-elektron 2s ( dan juga 3s, 4s ) berada dalam posisi dekat dengan nukleus daripada yang mungkin kita bayangkan. Efek dari ini adalah pengurangan energi dari elektron dalam orbital s. Semakin dekat elektron dengan nukleus, semakin rendah energinya.
orbital p
Tidak semua elektron memiliki sifat seperti orbital s. Pada tingkat energi pertama, orbital hanya terdiri dari orbital 1s, tetapi ketika kita memasuki tingkat energi kedua, selain daripada orbital 2s, kita akan menemukan orbital 2p.
Orbital p berbentuk seperti 2 buah balon yang identik yang diikat di tengahnya. Gambar di sebelah kiri menunjukkan adanya titik yang membagi ruang wilayah. Perlu diingat, orbital menunjukkan 95% kemungkinan elektron itu berada.

Tidak seperti orbital s, orbital p memiliki arah tertentu – pertama yang mengarah ke atas dan yang mengarah ke bawah.
Pada tiap tingkat energi ada kemungkinan terdapat 3 orbital p yang arahnya saling tegak lurus satu sama lain. Arah dari tiap orbital p ini diberi simbol px, py dan pz. x, y dan z merupakan koordinat dari orbital-orbital tersebut.
Orbital p pada tingkat energi kedua disebut dengan 2px, 2py dan 2pz. Begitu juga pada orbital lainnya 3px, 3py dan 3pz, maupun 4px, 4py dan 4pz dan seterusnya.
Seluruh tingkat energi selain dari tingkat energi pertama memiliki orbital p. Pada energi level yang lebih tinggi bentuk dari balon akan semakin lonjong, yang berarti kemungkinan elektron berada akan semakin jauh dari nukleus.
orbital d dan f
Selain daripada orbital s dan p, terdapat dua bentuk orbital lainnya di mana elektron berada pada tingkat energi yang lebih tinggi. Pada tingkat energi ketiga, kita akan menemukan 5 bentuk dari orbital d ( dengan bentuk dan penamaan yang lebih rumit ), dan tentunya juga orbital 3s dan orbital 3p (3px, 3py dan 3pz). Pada tingkat energi ketiga kita akan menemukan total 9 orbital.
Pada tingkat energi keempat, selain daripada orbital 4s , 4p dan 4d , kita juga akan menemukan tambahan 7 buah orbital f – dengan total 16 orbital. Orbital s, p, d dan f memiliki tingkat energi yang lebih tinggi.
Menempatkan elektron di orbital
Kita dapat membayangkan sebuah atom seperti sebuah istana – di mana nukleus berada pada lantai bawah tanah, kemudian tiap lantai terdiri dari kamar-kamar (orbital) yang akan ditempati oleh elektron-elektron. Lantai pertama hanya terdiri dari satu kamar ( yaitu orbital 1s ); lantai kedua terdiri dari 4 kamar ( orbital 2s, 2px, 2py dan 2pz ); lantai ketiga terdiri dari 9 kamar ( satu orbital 3s, tiga orbital 3p dan 5 orbital 3d ) dan seterusnya. Tetapi kamar-kamar tersebut tidaklah besar. Tiap orbital hanya dapat ditempati oleh 2 elektron.
Cara yang lazim digunakan untuk menggambarkan orbital yang dihuni oleh elektron adalah dengan cara ” kotak-kotak elektron “.
“Kotak-kotak elektron”
Orbital dapat diwakili oleh kotak dan atom digambarkan sebagai anak panah. Anak panah ke atas dan anak panah ke bawah digunakan untuk menggambarkan elektron yang berbeda arah.
Orbital 1s ditempati oleh 2 elektron seperti gambar di sebelah kanan dan kita bisa menuliskannya lebih singkat dengan 1s2 . Kata ini dibaca ” satu s dua ” bukan ” satu s kuadrat “.
Ingat, angka 1 mewakili tingkat energi, huruf s mewakili tipe dari orbital dan angka 2 mewakili jumlah elektron yang berada pada orbital tersebut.

Urutan mengisikan orbital
Elektron mengisi dari orbital pada tingkat energi rendah ( dekat dengan nukleus ) sebelum mengisi pada orbital pada tingkat yang lebih tinggi. Ketika dihadapkan pada orbital yang berada pada energi yang sama, elektron akan mengisi orbital yang kosong dahulu.
Diagram di bawah ini menggambarkan tingkat energi orbital sampai tingkat energi keempat.

Perhatikan bahwa orbital s selalu memiliki energi yang rendah daripada orbital p pada seluruh tingkat energi, jadi orbital s akan ditempati terlebih dahulu oleh elektron sebelum menempati orbital p.
Kita akan menemui kejanggalan pada posisi orbital 3d. Orbital ini berada pada tingkat energi yang lebih tinggi daripada 4s – jadi elektron akan menempati orbital 4s lebih dahulu sebelum menempati orbital 3d dan baru kemudian 4p. Kejanggalan berikutnya akan kita temui pada tingkat energi yang lebih tinggi lagi, sebagai contoh, di mana terjadi penindihan tingkat energi yang mengakibatkan orbital 4f akan terisi setelah orbital 6s.

Jari-jari atom

Mengukur jari-jari atom
Tidak seperti halnya bola, sebuah atom tidak memiliki jari-jari yang tetap. Jari-jari atom hanya bisa didapat dengan mengukur setengah dari jarak antara dua buah atom yang berapitan.

Seperti halnya gambar diatas, pada atom yang sama kita bisa mendapatkan jari-jari yang berbeda tergantung dari atom yang berapitan dengannya.
Gambar pada bagian kiri menunjukkan atom yang berikatan. Kedua atom ini saling menarik satu sama lain sehingga jari-jarinya lebih pendek dibandingkan jika mereka hanya bersentuhan. Hal ini kita dapatkan pada atom-atom logam di mana mereka membentuk struktur logam atau atom-atomnya secara kovalen berikatan satu sama lain. Tipe dari jari-jari atom seperti ini disebut jari-jari (radius) logam atau jari-jari kovalen, tergantung dari ikatannya.
Gambar pada bagian kanan menunjukkan keadaan di mana kedua atom hanya bersentuhan. Daya tarik antar keduanya sangat sedikit. Tipe dari jari-jari atom seperti ini dinamakan jari-jari (radius) van der Waals di mana terjadi daya tarik yang lemah di antara kedua atom tersebut.
Kecenderungan jari-jari atom pada tabel periodik
Pola kecenderungan jari-jari atom tergantung dari jenis jari-jari atom mana yang ingin kita ukur – tapi pada prinsipnya pola seluruhnya sama.
Diagram-diagram di bawah ini menunjukkan jari-jari logam untuk elemen-elemen logam, jari-jari kovalen untuk elemen-elemen yang membentuk ikatan kovalen dan jari-jari van der Waals untuk elemen-elemen yang tidak membentuk ikatan (misalnya unsur gas mulia).
Kecenderungan jari-jari atom pada periode 2 dan 3


Kecenderungan jari-jari atom pada suatu golongan

Kita dapat segera memperkirakan bahwa jari-jari atom pada golongan yang sama akan semakin besar jika letak atom itu pada tabel periodik semakin di bawah. Alasannya cukup kuat – karena kulit elektron semakin bertambah.
Kecenderungan jari-jari atom menyusur satu periode
Kita perlu mengabaikan jari-jari gas mulia pada setiap periode. Karena neon dan argon tidak membentuk ikatan, kita hanya dapat mengukur jari-jari van der Waals – di mana ikatannya sangatlah lemah. Seluruh atom-atom lainnya jari-jari atom diukur berdasarkan jarak yang lebih kecil dikarenakan oleh kuatnya ikatan yang terbentuk. Kita tidak dapat membandingkan “suatu sifat yang sama” jika kita mengikutsertakan gas mulia.

Kecuali gas mulia, atom akan semakin kecil menyusur satu periode

Dari litium ke flor, elektron seluruhnya berada pada level dua, yang dihalangi oleh elektron pada 1s2. Peningkatan jumlah proton pada nukleus seiring dengan menyusurnya periode akan menarik elektron-elektron lebih kuat. Kecenderungan pada energi ionisasi yang naik turun tidak kita temui pada radius atom.
Pada periode dari Natrium ke Klor, kita juga akan menemukan kecenderungan yang sama. Besar atom dikontrol oleh elektron-elektron pada tingkat ke 3 yang tertarik semakin dekat ke nukleus seiring dengan meningkatnya jumlah proton.
Kecenderugan pada elemen-elemen transisi


Walaupun pada awal dari elemen-elemen transisi, jari-jari atom sedikit mengecil, besar jari-jari atom hampir seluruhnya sama.
Dalam hal ini, besar dari jari-jari atom ditentukan oleh elektron-elektron 4s. Penarikan karena naiknya jumlah proton pada nukleus berkurang karena adanya penghalang tambahan yaitu bertambahnya elektron-elektron pada orbital 3d.
Memang hal ini agak sedikit membingungkan. Kita telah mempelajari bahwa orbital-orbital 4s memiliki tingkat energi lebih tinggi daripada 3d – di mana kebalikannya elektron akan menempati 4s sebelum 3d. Artinya, elektron-elektron 4s dapat kita simpulkan berada pada luar atom dan menentukan besarnya atom. Hal ini juga berarti orbital 3d berada lebih dekat dengan nukleus daripada 4s dan berperan sebagai penghalang.

Radius Ion

Ion-ion tidak memiliki besar yang sama dengan atom asalnya. Bandingkan besarnya ion natrium dan klor dengan atom natrium dan klor.

Ion Positif
Ion positif lebih kecil dibandingkan dengan atom asalnya. Konfigurasi elektron natrium adalah 2,8,1 ; sementara Na+ adalah 2,8. Kita kehilangan salah satu kulit elektron dan 10 elektron yang tersisa ditarik oleh 11 proton pada nukleus.
Ion Negatif
Ion negatif lebih besar dibandingkan dengan atom asalnya. Konfigurasi elektron klor adalah 2,8,7 ; sementara Cl- adalah 2,8,8. Walaupun elektron-elektron masih berada pada tingkat 3, penolakan tambahan terjadi karena bertambahnya elektron yang menyebabkan atom semakin membesar. Ion klor hanya memiliki 17 proton, tetapi mereka sekarang memiliki 18 elektron.
engukur jari-jari atom

Energi Ionisasi

Halaman ini menjelaskan apa yang dimaksud dengan energi ionisasi pertama, dan kemudian mengamati kecenderungannya pada tabel periodik – dalam satu periode dan golongan. Anda dianggap telah memahami tentang orbital atom sederhana, dan dapat menuliskan struktur elektron untuk atom yang sederhana.
Mendefinisikan energi ionisasi pertama
Definisi
Energi ionisasi pertama merupakan energi yang diperlukan untuk melepaskan elektron terluar (paling mudah lepas) dari satu mol atom dalam wujud gas untuk menghasilkan satu mol ion gas dengan muatan 1+.
Hal ini lebih mudah dipahami dalam bentuk simbol.

Pada penggambaran di atas, energi ionisasi pertama diartikan sebagai energi yang dibutuhkan untuk menghasilkan perubahan per mol X.
Yang perlu diperhatikan pada persamaan di atas
Simbol wujud zat – (g) – penting. Pada saat anda membahas energi ionisasi, unsurnya harus dalam wujud gas.
Energi ionisasi dinyatakan dalam kJ mol-1 (kilojoules per mole). Nilainya bervariasi dari 381 (yang sangat rendah) hingga 2370 (yang sangat tinggi).
Semua unsur memiliki energi ionisasi pertama – bahkan atom yang tidak membentuk ion positif pada tabung reaksi. Helium (E.I pertama = 2370 kJ mol-1) secara normal tidak membentuk ion positif karena besarnya energi yang diperlukan untuk melepaskan satu elektron.
Pola energi ionisasi pertama pada tabel periodik
20 unsur pertama
Energi ionisasi pertama menunjukkanperiodicity. Itu artinya bahwa energi ionisasi bervarisi dalam suatu pengulangan jika anda bergerak sepanjang tabel periodik. Sebagai contoh, lihatlah pola dari Li ke Ne, dan kemudian bandingkan dengan pola yang sama dari Na ke Ar.
Variasi pada energi ionisasi pertama ini dapat dijelaskan melalui struktur dari atom yang terlibat.
Faktor yang mempengaruhi energi ionisasi
Energi ionisasi merupakan ukuran energi yang diperlukan untuk menarik elektron tertentu dari tarikan inti. Energi ionisasi yang tinggi menunjukkan tarikan antara elektron dan inti yang kuat.
Besarnya tarikan dipengaruhi oleh:
Muatan inti
Makin banyak proton dalam inti, makin positif muatan inti, dan makin kuat tarikannya terhadap elektron.
Jarak elektron dari inti
Jarak dapat mengurangi tarikan inti dengan cepat. Elektron yang dekat dengan inti akan ditarik lebih kuat daripada yang lebih jauh.
Jumlah elektron yang berada diantara elektron terluar dan inti
Perhatikan atom natrium, dengan struktur elektron 2, 8, 1 (tak ada alasan mengapa anda tak dapat menggunakan notasi ini jika ini sangat membantu!)
ika elektron terluar mengarah ke inti, tidak akan terlihat oleh inti dengan jelas. Antara elektron terluar dan inti ada dua lapis elektron pada tingkat pertama dan kedua. Pengaruh 11 proton pada inti natrium berkurang oleh adanya 10 elektron yang lebih dalam. Oleh karena itu elektron terluar hanya merasakan tarikan bersih kira-kira 1+ dari pusat. Pengurangan tarikan inti terhadap elektron yang lebih dalam disebut dengan penyaringan (screening) atau perlindunga (shielding).
Apakah elektron berdiri sendiri dalam suatu orbital atau berpasangan dengan elektron lain
Dua elektron pada orbital yang sama mengalami sedikit tolakan satu sama lain. Hal ini mengurangi tarikan inti, sehingga el ektron yang berpasangan dapat dilepaskan dengan lebih mudah dari yang anda perkirakan.
Menjelaskan pola pada sebagian unsur-unsur pertama
Hidrogen memiliki struktur elektron 1s1. Merupakan atom yang sangat kecil, dan elektron tunggalnya dekat dengan inti sehingga dapat tertarik dengan kuat. Tidak ada elektron yang menyaring tarikan dari inti sehingga energi ionisasinya tinggi (1310 kJ mol-1).
Helium memiliki struktur 1s2. Elektron dilepaskan dari orbital yang sama seperti pada contoh hidrogen. Elektronnya dekat dengan inti dan tidak tersaring. Energi ionisasinya (2370 kJ mol-1) lebih besar dari hidrogen, karena elektronnya ditarik oleh dua proton pada inti, bukan satu seperti pada hidrogen.
Litium memiliki struktur 1s22s1. Elektron terluarnya berada pada tingkat energi kedua, lebih jauh dari inti. Anda mungkin berpendapat akan lebih dekat dengan adanya tambahan proton pada inti, tetapi elektron tidak mengalami tarikan yang penuh dari inti – tersaring oleh elektron 1s2.
Anda dapat membayangkan elektron seperti merasakan tarikan bersih +1 dari pusat (3 proton dikurangi oleh dua elektron 1s2 electrons).
Jika anda membandingkan litium dengan hidrogen (bukan dengan helium), elektron hidrogen juga mengalami tarikan 1+ dari inti, tetapi pada litium jaraknya lebih jauh. Energi ionisasi pertama litium turun menjadi 519 kJ mol-1 sedangkan hidrogen 1310 kJ mol-1.
Pola pada periode 2 dan 3
Membahas 17 atom pada saat bersamaan akan memakan waktu. Kita dapat melakukannya dengan lebih terarah dengan menjelaskan kecenderungan utama pada dua periode ini, dan kemudian menjelaskan pengecualian yang ada.
Secara umum pola pada kedua periode sama – perbedaannya energi ionisasi periode ketiga lebih rendah daripada periode kedua.
Menjelaskan kecenderungan umum pada periode 2 dan 3
Kecenderungan yang umum adalah energi ionisasi meningkat dalam satu periode dari kiri ke kanan.
Pada semua unsur periode 2, elektron terluar berada pada orbital tingkat 2 – 2s atau 2p. Semuanya memiliki jarak yang sama dari inti, dan tersaring oleh elektron 1s2.
Perbedaan pentingnya adalah terjadi kenaikan jumlah proton pada inti dari litium sampai neon. Hal itu menyebabkan makin kuatnya tarikan inti terhadap elektron sehingga menaikkan energi ionisasi. Pada kenyataannya kenaikan muatan inti menyebabkan elektron terluar lebih dekat ke inti. Kenaikan energi ionisasi itu berada dalam satu periode.
Pada periode 3, kecenderungannya sama. Semua elektron yang dilepaskan berada pada tingkat ketiga dan tersaring oleh elektron 1s22s22p6. Semuanya memiliki lingkungan yang sama, tetapi muatan intinya makin meningkat.
Mengapa terjadi penurunan antara golongan 2 dan 3 (Be-B dan Mg-Al)?
Penjelasannya didasarkan pada struktur boron dan aluminium. Elektron terluar kedua atom ini lebih mudah dilepaskan dibandingkan dengan kecenderungan umum pada atom-atom periode 2 dan 3 lainnya.
Be1s22s2E. I. pertama = 900 kJ mol-1
B1s22s22px1E. I. pertama = 799 kJ mol-1
Anda mungkin mengharapkan energi ionisasi boron lebih besar dari berilium karena adanya tambahan proton. Pada kenyataannya elektron terluar boron berada pada orbital 2p bukan pada 2s. Orbital 2p memiliki energi yang sedikit lebih tinggi daripada orbital 2s, dan elektronnya, rata-rata, berada lebih jauh dari inti. Hal ini memberikan dua pengaruh.
  • Bertambahnya jarak menghasilkan berkurangnya tarikan inti sehingga mengurangi energi ionisasi
  • Orbital 2p tidak hanya disaring oleh elektron 1s2 tetapi, sedikit, juga oleh elektron 2s2. Hal itu juga mengurangi tarikan dari inti sehingga energi ionisasinya lebih rendah.
Penjelasan terhadap turunnya energi ionisasi antara magnesium dan aluminium sama, hanya saja terjadi pada tingkat ke-3 bukan tingkat ke-2.
Mg1s22s22p63s2E. I. pertama = 736 kJ mol-1
Al1s22s22p63s23px1E. I. pertama = 577 kJ mol-1
Elektron 3p pada aluminium sedikit lebih jauh dari inti dibandingkan 3s, dan sebagian tersaring oleh elektron 3s2 sebagai elektron yang lebih dalam. Kedua faktor ini mengurangi pengaruh bertambahnya proton.
Mengapa terjadi penurunan diantara golongan 5 dan 6 (N-O dan P-S)?
Sekali lagi, anda mungkin mengharapkan energi ionisasi unsur golongan 6 akan lebih tinggi daripada golongan 5 karena adanya tambahan proton. Apa yang terjadi?
N1s22s22px12py12pz1E. I. pertama = 1400 kJ mol-1
O1s22s22px22py12pz1E. I. Pertama = 1310 kJ mol-1
Penyaringannya sama (oleh 1s2 dan, sedikit, oleh elektron 2s2), dan elektron dilepaskan dari orbital yang sama.
Perbedaannya adalah pada oksigen elektron dilepaskan dari salah satu pasangan 2px2. Adanya tolakan antara dua elektron pada orbital yang sama menyebabkan elektron tersebut lebih mudah dilepaskan dibandingkan yang lain.
Penurunan energi ionisasi pada sulfur dijelaskan dengan cara yang sama.
Kecenderungan turunnya energi ionisasi dalam satu golongan
Jika anda bergerak ke bawah dalam satu golongan pada tabel period ik, energi ionisasi secara umum akan menurun. Anda telah melihat bukti untuk hal ini bahwa energi ionisasi pada periode 3 lebih rendah dari periode 2.
Sebagai contoh pada golongan 1:
Mengapa energi ionisasi natrium lebih rendah dari litium?
Pada atom natrium terdapat 11 proton, tetapi pada atom litium hanya 3. Jadi muatan inti natrium lebih besar. Anda mungkin memperkirakan energi ionisasi natrium lebih besar, tetapi kenaikan muatan inti tidak dapat mengimbangi jarak elektron dari inti yang makin jauh dan lebih tersaring.
Li1s22s1E. I. pertama = 519 kJ mol-1
Na1s22s22p63s1E. I. pertama = 494 kJ mol-1
Elektron terluar litium berada pada tingkat kedua, dan hanya memiliki elektron 1s2 yang menyaringnya. Elektron 2s1 mengalami tarikan dari 3 proton dan disaring oleh 2 elektron – tarikan bersih dari pusat adalah +1.
Elektron terluar natrium berada pada tingkat 3, dan terhalangi dari 11 proton pada inti oleh 10 elektron yang berada lebih dalam. Elektron 3s1 juga mengalami tarikan bersih 1+ dari pusat atom. Faktor yang tersisa hanyalah jarak tambahan antara elektron terluar dan inti pada natrium. Sehingga energi ionisasi natrium lebih rendah.
Penjelasan yang sama berlaku jika anda bergerak ke bawah pada unsur lain pada golongan tersebut, atau, pada golongan yang lain.
Kecenderungan energi ionisasi pada golongan transisi
Selain seng pada bagian akhir, energi ionisasi semua unsur relatif sama.
Semua unsur memiliki struktur elektron [Ar]3dn4s2 (or 4s1 pada kromium dan tembaga). Elektron yang terlepas selalu dari orbital 4s.
Jika anda bergerak dari kiri ke kanan, dari satu atom ke atom lainnya dalam deretan golongan transisi, jumlah proton pada inti meningkat, elektron pada 3d juga bertambah. Elektron 3d mengalami beberapa pengaruh penyaringan, proton tambahan dan elektron 3d tambahan dapat menambah atau mengurangi pengaruh tarikan dari pusat atom yang diamati.
Kenaikan pada seng mudah untuk dijelaskan.
Cu[Ar]3d104s1E. I. pertama = 745 kJ mol-1
Zn[Ar]3d104s2E. I. pertama = 908 kJ mol-1
Pada contoh di atas, elektron yang dilepaskan berasal dari orbital yang sama, dengan penyaringan yang sama, tetapi seng memiliki satu tambahan proton pada inti sehingga daya tariknya lebih besar. Pada seng terdapat tolakan antar pasangan elektron orbital 4s, tetapi pada kasus ini tolakannya tidak cukup untuk mengimbangi pengaruh bertambahnya proton.
Energi ionisasi dan reaktivitas
Pada energi ionisasi yang lebih rendah, perubahan ini lebih mudah terjadi:

Anda dapat menjelaskan kenaikan reaktivitas logam golongan 1(Li, Na, K, Rb, Cs) dari atas ke bawah dalam satu golongan karena turunnya energi ionisasi. Bereaksi dengan apapun, logam-logam tersebut akan membentuk ion positif, dengan energi ionisasi yang lebih rendah, ion lebih mudah terbentuk.
Bahaya dari pendekatan ini adalah pembentukan ion positif terjadi hanya satu tahap dalam beberapa langkah proses.
Sebagai contoh, anda tidak mungkin memulai dengan atom gas; tidak juga mengakhirinya dengan gas ion positif – anda akan mengakhiri dengan ion dalam padatan atau larutan. Perubahan energi pada proses ini juga bervariasi dari satu unsur ke unsur lainnya. Secara ideal anda perlu mempertimbangkan semua hal dan tidak hanya mengambil sebagian saja.
Namun demikian, energi ionisasi unsur merupakan faktor utama yang berperan dalam energi aktivasi suatu reaksi. Ingat bahwa energi aktivasi merupakan energi minimum yang diperlukan sebelum reaksi berlangsung. Dengan energi aktivasi yang lebih rendah, reaksi akan lebih cepat – tanpa mengabaikan seluruh energi yang berubah pada reaksi tersebut.
Penurunan energi ionisasi dari atas ke bawah dalam satu golongan akan menyebabkan energi aktivasi lebih rendah dan reaksi menjadi lebih cepat.